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INTRODUCTION
When designing a programming language, it is essential to consider a specific problem that the 

language aims to solve. The goal should be to clearly identify the task at hand and design a solution 
that helps achieve it more efficiently. The first programming languages were created to abstract the 
process of writing binary code, allowing computer code to become human readable and eliminating the 
need to manually write machine code. This concept of abstraction can be applied to more than just 
writing code for computers. For example, when solving physics problems in school, how can you 
effectively visualize the concepts that are being represented on paper? Similarly, when observing 
physics simulators (impressive programming feats in their own right), how do you precisely define the 
scenarios you want them to simulate?

Introducing Physisim, a dual-system that combines a graphical physics engine with a custom 
scripting language. The scripting language (dubbed Physiscript) allows users to define interactions 
within the simulation, while the physics engine handles the underlying calculations. Both the physics 
engine and the interpreter are complex systems in their own right, each presenting its own set of 
challenges. Together, they form the foundation of this project.

BACKGROUND
At a high level, Physisim can be understood as the union between a graphical physics engine 

and an interpreter. Both of these major components are the heart and soul of Physisim, and each of 
these two components have a multitude of sub-components. If one wishes to replicate this project, it is 
crucial that they understands the different sub-components that go into creating a project such as this. A
physics engine in of itself is a complicated amalgamation of various sub-components, each of which 
present their own challenges in creating. On top of this complexity, Physisim includes it’s own custom 
interpreter and graphics engine. 

The sub-components of each major part of Physisim can be visualized as such:

Physiscript   Interpreter  Physics Engine
• Lexer
• Tokenizer
• Token dictionaries
• Current-operation next-operation (CONO) table
• CONO pairs & operations

• Engine itself (handles time intervals)
• Display & graphics engine
• Collision handler
• Object & world classes
• Vector math utility functions

MOTIVATION
The motivation behind this project stemmed from a desire to explore the combination of 

programming languages and real-world simulation. Physics engines are powerful tools for simulating 
complex systems, but they often require specialized knowledge to effectively interact with. By creating 
a custom scripting language, the aim was to simplify the process of defining and manipulating physical 
interactions, making it more accessible to users without a deep technical background to create their 
own scenarios and watch them play out in real time.

REQUIREMENTS
The Physisim project is built upon two main components: the Physiscript Interpreter and the 

Physics Engine. Each of these components has specific sub-components that define their functionality 
and contribute to the overall operation of the system. 



Physiscript Language
    The scripting language is designed to be written with the same logic that physics problems are 
written with on paper. The language should be able to translate into english when read out-loud.

Writing Physiscript
    Objects and forces are defined simply by 
calling the definition and then listing it’s 
identifier. The definition “PARTICLE obj1” will 
do exactly as it sounds: declare a particle called 
“obj1”.

    When it comes to parameters, they should be 
able to be applied how you would describe an 
object in real life. For example, if you wanted to 
describe the mass of “obj1”, one would say:
    “obj1’s mass is 14 kg”. 

Translating this to Physiscript: 
    obj1 MASS 14

    Any parameter with the tag (vector format) 
needs both an x and y floating point parameter. 
These are defined in parenthesis as such: (x, y). 

For example: 
    f1 MAG (-2.3, 7.9)
This will set a vector magnitude of x = -2.3 N and 
y = 7.9 N to the force defined as f1. 

Definitions
PARTICLE – define a spherical particle vector
FORCE – define a force vector

Parameters
MASS – set object’s mass
RADIUS – set how big a spherical object is
DENSITY – sets how dense an object is
ELASTICITY – sets the “bounciness” of an object
POS – set object position (vector format)
MAG – set a force magnitude (vector format)

Events
APPLY – sets a time stamp for defined force to be
applied to an object. Use the ‘@’ symbol to define
timestamp.
________________________________________

Example event:
    APPLY f1 obj1 @ 10
   “apply f1 to obj1 at 10 seconds…”

All numerical values in Physiscript are assumed to have base units. This means that one should 
be familiar with what unit a parameter is recorded in and make their definitions accordingly. This 
design choice was made to simplify the language and make it easier to read, as every physics student 
should be familiar with units.

Physiscript Interpreter

Lexer
The lexer is responsible for splitting the input buffer into individual tokens. This is 

accomplished using “delimiters”, or characters that determine when to ‘cut’ the string. The lexer 
written for Physisim uses the following delimiter string: 

static char DELIMITERS[] = " \n\t";

Most programming languages provide functionality to split strings given a set of delimiters. 
Because Physisim is written in C++ (and originally C), it has a custom parser that deals with this. All 
that is required of the lexer for the purposes of this project is the ability to return an array of strings that
have been parsed in accordance with the above delimiters.



Tokenizer & Encoding
The tokenizer processes the token array produced by the lexer, classifying them into 

recognizable types that can be interpreted by the system. It must accurately identify keywords, 
operators, variables, and literals, and ensure the integrity of the token stream for further processing. 
The tokenizer stores each token string in a dictionary, and then adds it’s index into an integer array.  
This process is called encoding. After encoding, this integer array is returned and used for further 
processing.

 Token Dictionaries
    For this interpreter implementation, dictionaries are used to store string tokens. This is important for 
optimizing space (with repeat tokens) and allowing efficient retrieval of information given an index. 
These dictionaries map each token to its corresponding data structure, allowing the interpreter to 
efficiently reference and process tokens when evaluating CONO-pairs. This structure must be dynamic 
and support quick lookups to ensure smooth execution. Physisim has a custom dictionary data structure 
designed for the Physiscript language.

CONO Pairs & Operations
    CONO pairs define the relationships between operations, while operations themselves represent the 
executable actions. When two token indexes are inserted into a completed CONO table, an operation is 
returned. By traversing through the token index array and gathering CONO pairs, it is possible to 
execute actions in-sequence of one another. This is the core of how the interpreter works.

Current-Operation Next-Operation Table
    The CONO table defines how operations are 
handled in sequence, based on the current 
operation and the next operation to be executed. It
serves as a critical part of the logic that dictates 
the flow of operations during script execution. The
table itself is defined before processing. This is 
necessary to ensure a consistent application of 
CONO pairs. 

Physiscript CONO Operations
ERR – Fail-safe in case of incorrect indexing.
NOOP – do nothing.
INIT – begin initialization stage of script (unused)
EVENT – begin event stage of script        (unused)
APPLY – schedule an event with timestamp
DEFINE – define a new variable given identifier
PARAM – set object parameters given identifier

Putting it all together, we are left with a fully fledged scripting language interpreter. Below is 
the code implementation of all these components together, as well as the core “execution” function in 
which you can see how all of the data is handled by the CONO operations.

Interpreter Class & Event Structure CONO Operation Execution
typedef struct {
  int fi;
  int oi;
  int time;
  bool done;
} event;

class Interpreter {
  private:
    void execute(int co, int no, int last);

    char *buffer;                                 //file buffer
    dictionary_t dict;                          //language dictionary
    char **tokens;                              //token array (strings)
    int *codes;                                    //encoded array (integers)
    int **cono;                                   //CONO table

void Interpreter::execute(int co, int no, int last) { 
  int op = cono[codes[co]][codes[no]]; 
  int index; 
  int li; 
  int c = 0; 
  char *str;
  char **vecstr; 
  const char *vecdelims = ","; 
  float temp = (float)codes[co+1]; 
  event ev;
  switch(op) { 
    case APPLY:
      
      ev = {        
        table_get_i(vectbl, codes[co+1]),
        table_get_i(objtbl, codes[co+2]),



    std::map<std::string, int> kmap;  //CONO memory during execution
    std::map<std::string, int> smap;  //CONO memory during execution
    
  public:
    void read_file(char *filepath);    //read file from disk  
    void run_code();                         //interpreter main function

    Interpreter();
    
    int objc;
    int vecc;
    int eventc;
    table_t objtbl;
    table_t vectbl;
    std::vector<Object> objs;
    std::vector<Vec>    vecs;
    std::vector<event>  events;

};
____________________________________________________________

Interpreter Main Function
    In sum, the interpreter functions as such: 
read file → split string buffer → tokenize strings 
→ encode tokens → march through token array &
insert into CONO table → execute operations.

void Interpreter::run_code() {
  if (buffer == NULL)
    return;
  int count = 0;
  char *delims = DELIMITERS;
  char **lines = split(buffer, delims, &count); // split string buffer
  int codec = count;
  codes = encode(lines, &codec, &dict); //encode string buffer
  
  for (int i = 0; i < codec; i++) {         //march through the cono table
    int co = i;
    int no = march_ops(&dict, codes, codec, i);
    if (no < codec && cono[codes[co]][codes[no]] != ERR && 
cono[codes[co]][codes[no]] != NOOP) {
      execute(co, no, lastop);            //if cono pair, execute.
      lastop = co;
    }
    i = no-1;
  }

  free(codes);
  free_split_string(lines, count);

}

        (int) dict_get_f(dict, codes[co+4]),
        false
      };
      printf("ind: %d\n", ev.fi);
      events.push_back(ev);
      eventc++;
      break;
    case DEFINE:
      index = codes[co]; 
      if (index == 3) { //particle
        Object particle({100,100,0}, 15.0, 0.01, 0.1, 1.8, false);
        objs.push_back(particle);

        table_push(&objtbl, &temp);
        objc++;
      } else if (index == 4) { //force
        Vec force = {10, 10, 0};
        vecs.push_back(force);
        
        table_push(&vectbl, &temp);
        vecc++;
      }

      break;
    case PARAM:
      index = codes[co];
      if (index == kmap[(std::string)KEY_MASS]) {
        li = table_get_i(objtbl, codes[co-1]);
        objs.at(li).setmass( dict_get_f(dict, codes[co+1]) );
        break;
      }      
      if (index == kmap[(std::string)KEY_RAD]) {
        li = table_get_i(objtbl, codes[co-1]);
        objs.at(li).setradius( dict_get_f(dict, codes[co+1]));
        break;
      }
      if (index == kmap[(std::string)KEY_DENS]) {
        li = table_get_i(objtbl, codes[co-1]);
        objs.at(li).setdens( dict_get_f(dict, codes[co+1]));
        break;
      }
      if (index == kmap[(std::string)KEY_ELAS]) {
        li = table_get_i(objtbl, codes[co-1]);
        objs.at(li).setelas( dict_get_f(dict, codes[co+1]));
        break;
      }
      if (index == kmap[(std::string)KEY_POS]) {
        li = table_get_i(objtbl, codes[co-1]);
        str = dict_get_s(dict, codes[co+1]);
        str[0] = ' ';
        str[strlen(str)-1] = ' ';
        vecstr = split(str, vecdelims, &c);
        objs.at(li).setpos({(float)atof(vecstr[0]), (float)atof(vecstr[2]), 0});
        break;
      }
      if (index == kmap[(std::string)KEY_MAG]) {
        li = table_get_i(vectbl, codes[co-1]);
        str = dict_get_s(dict, codes[co+1]);
        str[0] = ' ';
        str[strlen(str)-1] = ' ';
        vecstr = split(str, vecdelims, &c);
        vecs.at(li) = {(float)atof(vecstr[0]), (float)atof(vecstr[2]), 0};
        break;
      }
      break;
  }
}



Physics Engine

Engine
    The physics engine is the core component of the
simulation, responsible for managing time 
intervals and advancing the state of the 
simulation. It must support continuous time steps 
and be capable of simulating real-time interactions
with high accuracy. The engine must also provide 
functionality for managing time-based updates for
all objects in the system.

Display & Graphics Engine
    The display engine is tasked with rendering the 
simulation visually. It must be able to display 
objects, their interactions, and the environment in 
real-time, providing clear visual feedback to the 
user. This engine utilizes OpenGL to render 
objects. Of the public functions, clean(), draw(), 
and update() are used in order during the main 
program loop. The clean() function clears the 
screen, draw() draws the entire scene to the frame,
and update() renders the frame so it can be seen 
by the viewer.

class Engine {
  private:
    uint64_t ticks;
    int tps;        //ticks per second
    double interval;
    double dtime;   //milliseconds
    double sdelta;  //seconds
  public:
    void init(char *title, int w, int h, char *fp);
    void update_time();
    void tick();
    void update();
    void check_events();
    uint8_t is_running;
};

class Window {
  private:
    void drawpixel(float x,float y, int r, int g, int b);
    void drawcircle(float x, float y, float radius, int r, int g, int b);
    void drawline (int x, int y1, int y2, int r, int g, int b);
    
    int width, height;
    SDL_Window *win;
    SDL_Renderer *renderer;
    SDL_Event event;
    Camera cam;

  public:
    void clear();
    void draw(World w);
    void update();
    void check_updates();
    void kill();

    Window(char *title, int w, int h);
};

Collision Handler
    The collision handler is responsible for 
detecting and resolving collisions between objects
in the simulation. It must accurately detect when 
objects overlap or collide and apply appropriate 
physical responses, which in this case is applying 
an impulse (reaction force) to each colliding 
object.

bool Collision::circle_int(Object a, Object b) {
  Vec ca = a.getpos(), cb = b.getpos();
  float ra = a.getradius(), rb = b.getradius();
  normal = ZERO;
  depth = 0.0f;

  float dist = distance(ca, cb);
  float radii = ra + rb;
  
  if (dist >= radii) return false;

  normal = normalize( sub(cb, ca) );
  depth = radii - dist;
  
  return true;
}

void Collision::resolve(Object *a, Object *b) {
  Vec vrelative = sub(b->velocity, a->velocity);
  
  if (dot(vrelative, normal) > 0.0f) return;

  float e = min(a->elasticity, b->elasticity);

  float j = -(1.0f + e) * dot(vrelative, normal);
  j /= 1/a->mass + 1/b->mass;

  Vec impulse = scale(normal, j);
  a->velocity = sub(a->velocity, scale(impulse, 1/a->mass));
  b->velocity = sum(b->velocity, scale(impulse, 1/b->mass));
}



void Collision::handle(Object *a, Object *b) {
  if (a->type == CIRCLE && b->type == CIRCLE && circle_int(*a, *b)) {
    a->move( scale(scale(scale(normal, -1.0f), depth), 0.5f) );
    b->move( scale(scale(normal, depth), 0.5f) );
    resolve(a, b);
  } else return;
}

Object & World Classes
    The object and world classes define the 
physical entities in the simulation. The object 
class must define properties such as position, 
velocity, mass, and other physical attributes. The 
world class serves as the container for all objects, 
managing their relationships and interactions 
within the environment. Both classes must support
efficient updates and retrievals of physical 
properties.

class Object {
  private:
    float angle;
    float vrot;

  public:
    Vec fnet;
    Vec pos;
    Vec velocity;
    float mass;
    float density;
    float elasticity;
    bool equalibrium;
    bool is_static;
    float width;
    float height;
    float area;
    float radius;
    
    int type;

    void applyforce(Vec force);
    void step(float dtime);
    void move(Vec v);
    void moveto(Vec p);
};

class World {
  private:
    float gravity;
    bool drag;
    std::vector<Object> objects;
  public:
    int type;
    int objc;
    
    void addobj(Object obj);
    Object *getobj(int id);
    Object copyobj(int id);
    void step(float dtime);
    void handle_collisions();
};

Vector Math Utility Functions
    The vector math functions provide the 
mathematical operations needed to simulate 
motion and force interactions in the physics 
engine. These functions are crucial when doing 
physics calculations. They must be able to 
perform vector mathematics given a vector object 
“Vec”. 

typedef struct {
float x;
float y;
float z;

} Vec;

float magnitude(Vec a);
float distance(Vec a, Vec b);
float angle(Vec a, Vec b);
float dot(Vec a, Vec b);
float min(float a, float b);
int fcomp(float a, float b);
int vcomp(Vec a, Vec b);
Vec sum(Vec a, Vec b);
Vec sub(Vec a, Vec b);
Vec scale(Vec a, float s);
Vec cross(Vec a, Vec b);
Vec normalize(Vec a);



RESULTS
Given the following script: 

example.psim

PARTICLE a
a MASS 0.3
a POS (200, 200)

PARTICLE b
b MASS 0.3
b POS (400, 200)

PARTICLE c
c MASS 0.54
c POS (300, 200)

FORCE f 
f MAG (20, 0)

APPLY f a @ 2

    We would expect to see (on an X-Y plane) three circles. After exactly
two seconds of watching stationary circles, we would expect the 
leftmost object to begin moving rightward, and collide with the middle 
object. After this collision, the leftmost object should change it’s 
trajectory, and the middle object should begin moving. Finally, The 
middle object should collide with the rightmost object, changing the 
middle trajectory and moving the rightmost. Plugging this script into 
Physisim, we get the following result:

1.) Time < 2 Seconds 

Objects in equilibrium.

2.) Time > 2 Seconds

Force applied to leftmost, begins moving.

3.)

Leftmost and middle collide, leftmost moves left 
and middle moves right.

4.)

Middle collides with rightmost, and the simulation
continues.



By writing a more sophisticated script: We get a more interesting result:
pool.psim
PARTICLE white
white MASS 0.1
white RADIUS 15
white ELASTICITY 0.4
white POS (100, 250)

PARTICLE one
one POS (300, 250)

PARTICLE two
two POS (340, 270)

PARTICLE three
three POS (340, 230)

PARTICLE four
four POS (380, 290)

PARTICLE five
five POS (380, 250)

PARTICLE six
six POS (380, 210)

PARTICLE seven
seven POS (420, 270)

PARTICLE eight
eight POS (420, 230)

PARTICLE nine
nine POS (420, 190)

PARTICLE ten
ten POS (420, 310)

FORCE f 
f MAG (20, 0.3)

APPLY f white @ 2

CONCLUSIONS
In conclusion, Physisim demonstrates the full potential of designing a custom programming 

language. By combining a programming language with a graphical physics engine, we simplify and 
enhance the process of simulating physics scenarios. With Physisim’s scripting language, Physiscript, 
users can define and manipulate physical systems in a way that is intuitive and closely aligned with 
real-world physics practice problems. The integration of an interpreter and a physics engine allows for 
a streamlined process for users with limited technical backgrounds to explore more complex 
simulations and scenarios, contributing to both educational and professional applications in physics and
engineering. 
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